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Overview 

•  Some customers will not move to a new platform unless 
–  Existing QA criteria are met 
–  they can exactly reproduce the results from their old platform 
–  Optimized builds exactly reproduce debug builds 

•  The right compiler options can deliver consistent, closely reproducible 
results whilst preserving good performance 
–  Across IA-32, IA-64, Intel® 64 and compared to other IEEE-compliant 

platforms 
–  Across optimization levels 
–  Available in 9.1, 10.0 and 10.1  compilers 
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Floating Point (FP) Programming Objectives 

•  Accuracy 
–  Produce results that are “close” to the correct value 
• Measured in relative error, possibly in ulp 

•  Reproducibility 
–  Produce consistent results 
•  From one run to the next 
•  From one set of build options to another 
•  From one compiler to another 
•  From one platform to another 

•  Performance   
–  Produce the most efficient code possible 
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Floating Point Semantics 

•  The –fp-model (/fp:) switch lets you choose the floating point 
semantics at a coarse granularity.  It lets you specify the 
compiler rules for: 

–  Value safety 
–  FP expression evaluation 
–  FPU environment access 
–  Precise FP exceptions 
–  FP contractions 

Note – The remainder of the presentation uses the option spellings for 
Linux* and Mac OS* X. The concepts also apply on Microsoft* Windows*; 
see the compiler documentation for the corresponding spellings. 
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The –fp-model switch 

•  -fp-model 
–   fast [=1]   allows value-unsafe  optimizations (default) 
–   fast=2   allows additional approximations 
–   precise   value-safe optimizations only 

                          (also source, double, extended) 
–   except   enable floating point exception semantics 
–   strict   precise + except + disable fma 

•  Replaces –mp, -IPF-fltacc, etc 
•  -fp-model source   is recommended for ANSI/ IEEE standards 

compliance (C++ & Fortran) 

See   http://www.intel.com/cd/software/products/asmo-na/eng/279090.htm 
“Floating Point Calculations and the ANSI C, C++ and Fortran Standard”  
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Value Safety 

•  In SAFE (precise) mode, the compiler may not make any 
transformations that could affect the result, 
e.g. the following is prohibited: 

    (x + y) + z  x + (y + z)  general reassociation is not value safe 

•  UNSAFE (fast) mode is the default 
–  The variations implied by “unsafe” are usually very tiny 

•  VERY UNSAFE (fast=2) mode enables riskier transformations 
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Examples of Value-Unsafe Optimizations 

•  Disabled by -fp-model  precise: 
–  reassociation,         eg   (a+b) + c → a + (b+c) 
–  zero folding               eg   X+0 →X,  X*0 →0 
–  multiply by reciprocal   eg   A/B → A*(1/B) 
–  approximate sqrt 
–  flush-to-zero 
–  drop RHS to LHS precision,        etc. 

•  FMA contractions are not disabled 
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 Flush-to-zero (FTZ) 

•  -ftz and -no-ftz  override the -fp-model settings 
–  -ftz is implied by -O3 on IA-64, default on IA-32/Intel 64 

•  Sets [avoids setting] the hardware flush-to-zero mode 
–  On IA-32, FTZ is only set after a successful runtime 

processor check 
–  For IA-32/Intel 64, this only affects SSE code.               

There is no FTZ control for x87 
•  available for both C and Fortran  in 10.0 

•  Must compile main with this switch to have an effect 

•  FTZ is NOT a guarantee that denormals in a program are 
flushed to zero!!  It is an optimization that ALLOWS 
denormals to be flushed to zero. 
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Reassociation 

•  Addition & multiplication are “associative”   (& distributive) 
•    a+b+c = (a+b) + c = a + (b+c) 
•    a*b + a*c = a * (b+c) 

•  These transformations are equivalent mathematically 
–   but not in finite precision arithmetic 

•  Reassociation can be disabled in its entirety 
–  ⇒ standards conformance 
–  Use   -fp-model precise   
–  May carry a significant performance penalty 

(other optimizations also disabled 

–  -assume protect_parens     (Fortran only) 
• Respects the order of evaluation specified by parentheses 
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Reductions 

•  Parallel implementations imply reassociation (partial sums) 
–  Not value safe 

•  -fp-model precise  
–  disables vectorization of reductions 
–  does not affect OpenMP* or MPI* reductions 
    These remain value-unsafe 

(programmer’s responsibility) 

float Sum(const float A[], int n ) 
{ 
    float sum=0; 
    for (int i=0; i<n; i++) 
        sum = sum + A[i]; 
    return sum; 
}  

 float Sum( const float A[], int n ) 
 { 
   int i, n4 = n-n%4;  
   float sum=0,sum1=0,sum2=0,sum3=0; 
   for (i=0; i<n4; i+=4) { 
       sum  = sum  + A[i]; 
       sum1 = sum1 + A[i+1]; 
       sum2 = sum2 + A[i+2]; 
       sum3 = sum3 + A[i+3]; 
   } 
   sum = sum + sum1 + sum2 + sum3; 
   for (; i<n; i++) sum = sum + A[i]; 
    return sum;    }  
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Example CAM (Community Atmosphere Model): 

•  Issue: Different results  with/without optimization 
–  Residuals increase by an order of magnitude 

• Cause:  reassociation of 
             A(I) + B + TOL -> A(I) + (B + TOL) 
    when A(I)=-B >> TOL   the result may become zero 
  or very small – impact on final result can be large 

• Solution:  -fp-model precise       or 
 -assume protect-parens  with  source change 
            (A(I) + B) + TOL 
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Example WRF (Weather Research & Forecasting) 

•  Issue:  different results when run on different   
     numbers of processors under MPI 

• Cause: Loop bounds, and hence alignment, changes when 
number of MPI processes changes. Different code in loop 
kernel from that in prologue & epilogue can give different 
results for same data. 

• Solution: -fp-model precise to keep same code and library 
calls for loop prologue, epilogue and kernel. 
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Example WRF 

•  Issue: different results re-running the same binary 
  on the same data on the same processor 

• Cause: with 10.x, global stack address and alignment can 
change due to external events. This changes number of 
iterations in prolog, & hence order of operations for 
vectorized reductions. 

• Solution: -fp-model precise to disable vectorization of 
reductions 
–  In 11.x, the global stack is realigned consistently to a 

128 byte boundary. 
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FP Expression Evaluation 

•   a = (b + c) + d 

•  Four possibilities for intermediate rounding, (corresponding to 
C99 FLT_EVAL_METHOD ) 

–  Indeterminate                      (-fp-model fast) 
–  Use precision specified in source    (-fp-model source) 
–  Use double precision        (C/C++ only)  (-fp-model double) 
–  Use long double precision (C/C++ only)  (-fp-model extended) 

•  Or platform-dependent default           (-fp-model precise) 

•  The expression evaluation method can significantly impact 
performance, accuracy, and portability! 
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The Floating Point Unit (FPU) Environment 

•  FP Control Word Settings 
–  Rounding mode (nearest, toward +∞, toward -∞, toward 0) 
–  Exception masks (inexact, underflow, overflow,              

           divide by zero, denormal, invalid) 
–  Flush-to-zero (FTZ), Denormals-are-zero (DAZ) 
–  x87 precision control (single, double, extended) 
• but beware of changing this! 

•  Status Flags 
–  11 mapping to exception masks 
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FPU Environment Access 

•  When access disabled (default): 
–  compiler assumes default FPU environment 

•  Round-to-nearest 
•  All exceptions masked 
•  No FTZ/DAZ 

–  Compiler assumes program will NOT read status flags 

•  If user might change the default FPU environment, inform 
compiler by setting FPU environment access mode!! 
–  Access may only be enabled in value-safe modes, by: 
•  -fp-model strict                     or 
• #pragma STDC FENV_ACCESS ON 

–  Compiler treats control settings as unknown 
–  Compiler preserves status flags 
–  Some optimizations are disabled 
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Precise FP Exceptions 

•  When Disabled (default): 
–  Code may be reordered by optimization 
–  FP exceptions might not occur in the “right” places 
–  Especially important for x87 arithmetic 

•  When Enabled   [by –fp-model strict, -fp-model except            
           or  #pragma float_control(except, on)  ] 

–  The compiler must account for the possibility that any FP 
operation might throw an exception 
•   Inserts fwait instructions for x87 
•   Disables optimizations such as FP speculation  
•   May only be enabled in value-safe modes 

–  Does not unmask exceptions  
•   Must do that separately  (e.g. –fpe0  for Fortran) 
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Example 
 double  x,  zero = 0.; 
   feenableexcept(FE_DIVBYZERO); 

   for( int i = 0; i < 20; i++ ) 
      for( int j = 0; j < 20; j++) 
         x = zero ? (1./zero) : zero; 

Problem:  FP exception from  (1./zero)  despite explicit protection 
–  The invariant (1./zero) gets speculatively hoisted out of loop by optimizer, 

but the “?” alternative does not  
–  exception occurs before the protection can kick in 

Solution:  Disable optimizations that lead to the premature exception 
–  icc –fp-model precise –fp-model except     (or icc –fp-model strict) 

 disables all optimizations that could affect FP exception semantics 
–  icc –fp-speculation safe 

disables just speculation where this could cause an exception 
–  #pragma floatcontrol    around the affected code block   (see doc) 
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Floating Point Contractions 

•  affects the generation of FMA instructions on IA-64 
–  Enabled by default 
–  Disabled by –fp-model strict  or C/C++ #pragma 
–  -[no-]IPF-fma  switch overrides –fp-model setting 

•  When Enabled  (default) 
–  The compiler may generate FMA for combined multiply/add 
–  Faster, more accurate calculations 
–  Results may differ in last bit from separate multiply/add 

•  When Disabled  [ -fp-model strict, #pragma fp_contract(off) ] 
–  The compiler must generate separate multiply/add with 

intermediate rounding 
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Typical Performance Impact of  -fp-model source 

•  Measured on SPECCPU2000 fp  (base): 
–  IA-64 

•  ~20% for apps built with -O3  -ftz 
–  Intel 64 

•  ~1%  for apps built with –O2 –ftz 
•  ~15%  for apps built with –fast –ftz 

–  IA-32  using mostly SSE instructions 
•  ~1%  for apps built with –O2 –xW –ftz 

–  IA-32  using mostly x87 instructions 
•  Windows:  ~5-10% 
•  Linux:       ~20-50%       (due to many precision conversions) 

•  See   “Floating Point Calculations and the ANSI C, C++ and Fortran Standard” 

Use   -fp-model source (/fp:source) to improve floating point 
 reproducibility whilst limiting performance impact 
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Known issues  

•  -fp-model source is needed even for debug builds (-O0)  
–  In 10.x, -O0 implies -mp 
–  Particularly important on Intel 64, where –O2 builds use SSE but             

–O0 builds use x87 because of implied –mp 

•  Even with –fp-model precise,  the compiler may inline math functions 
or call optimized versions that may give different results 
–  Use –nolib-inline  (/Oi-)  to prevent this 
–  On IA-64, use –opt-report –opt-report-phase ipo_inl  to show which 

functions get inlined. 

•  Vectorization results in calls to a different math library that yields 
different, slightly less accurate results than libm (libimf). 
–  For exact comparison with debug builds,  
–  can disable with –no-vec (10.x –vec-) 

•  -O0 –fp-model source –nolib-inline –no-vec 
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Math Library Functions 

•  Different implementations may not have the same accuracy  
–  On Intel 64: 

•  libsvml for vectorized loops 
•  libimf (libm) elsewhere 
•  Processor-dependent code within these libraries, dispatched at runtime 

–  On IA-64: 
•  Inlined code for many functions (to allow software pipelining) 
•  libimf calls elsewhere 

•  No official standard (yet) dictates accuracy or how results should be 
rounded       (except for division & sqrt) 

•  -fp-model precise helps generate consistent calls, eg within loops 
•  Does not currently make vectorized loop consistent with non-vectorized 
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Math Libraries – known issues 

•  Differences could potentially arise between: 
• Different compiler releases, due to algorithm improvements 
–  No workaround, except use later RTL with both compilers 

• Different platforms, due to different algorithms or different 
code paths at runtime 
–  Libraries have internal processor dispatch 
–  Independent of compiler switches 

• Expected accuracy is maintained 
–  0.55 ulp for libimf 
–   < 4 ulp for libsvml  (vectorized loops) 

•   Adherence to an eventual standard for math functions would 
improve consistency but at a cost in performance. 
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Further Information 

•  Microsoft Visual C++* Floating-Point Optimization 
http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx 

•  The Intel® C++ and Fortran Compiler Documentation, 
      “Floating Point Operations” 

•  http://www.intel.com/cd/software/products/asmo-na/eng/279090.htm 
“Floating Point Calculations and the ANSI C, C++ and Fortran 
Standard” 

•  Goldberg, David: "What Every Computer Scientist Should 
Know About Floating-Point Arithmetic“ Computing Surveys, 
March 1991, pg. 203 
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Summary/Call to Action 

•  Compiler options let you control tradeoffs between accuracy, 
reproducibility and performance 

•  Use   -fp-model source (/fp:source) to improve floating point 
reproducibility whilst limiting performance impact 

•  Explain this to customers 
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FPU Environment Access 

•  Affected Optimizations, e.g. 
–  Constant folding 
–  FP speculation 
–  Partial redundancy elimination 
–  Common subexpression elimination 
–  Dead code elimination 
–  Conditional transform, i.e. 

if (c) x = y; else x = z;  x = (c) ? y : z; 
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Quick Overview of Primary Switches 

Primary Switches Description 

/fp:keyword 

-fp-model keyword 

fast[=1|2], precise, source, except, strict 
 [ double, extended  -  C++ only] 
Controls floating point semantics 

/Qftz[-]             -[no-]ftz Flushes denormal results to Zero 

Other switches 

/Qfp-speculation keyword 
-fp-speculation keyword 

fast, safe, strict, off 
floating point speculation control 

/Qprec-div[-]      -[no-]prec-div Improves precision of floating point divides 

/Qprec-sqrt[-]     -[no-]prec-sqrt Improves precision of square root calculations 

/QIPF-fp-relaxed  -IPF-fp-relaxed Same as  -noprec-div –noprec-sqrt   on IA-64 

/QIPF-fma[-]       -[no-]IPF-fma Enable[Disable] use of fma instructions on IA-64 

/fpe:0                 -fpe0 Unmask floating point exceptions  (Fortran only) 

/Qfp-port            -fp-port Round floating point results to user precision 

/Qprec                -mp1 More consistent comparisons & transcendentals 

/Op[-]     -mp [-nofltconsistency] Deprecated in 10.1;   use /fp:source  etc  instead 


